The doors of the university’s brand-new Integrated Science, Engineering, and Technology (ISET) complex opened on Aug. 29 to give attendees at the opening ceremony—who included President Walter Harrison; Louis Manzione, dean of the College of Engineering, Technology, and Architecture; inventor Dean Kamen; and U.S. Rep. John B. Larson—an opportunity to tour the sparkling new facilities.

Peter Eio, chairman of the board of regents, described the opening of the new complex as “the culmination of a great deal of hard work and planning that represents a very special milestone in the history of the university.”

Guests were then invited to attend demonstrations conducted by faculty and students from a number of different disciplines that showcased the type of work made possible by the new ISET facilities.

The opening marks the completion of Phase I of the complex, which includes the renovation of the east wing of Dana Hall and the construction of the 37,000-square-foot Biology and Chemistry Building. Phase II, which involves the renovation of the west wing of Dana, is scheduled for completion in January 2006.

The $34 million ISET complex is the largest single construction project in university history. Designed to encourage collaboration and interdisciplinary learning, the complex brings together students and faculty from the College of Arts and Sciences; the College of Education, Nursing and Health Professions; and the College of Engineering, Technology, and Architecture.

At left: (top) The Biology and Chemistry Building; (middle) guests at the opening ceremony; (bottom) Dean Kamen (left) with a robot built by Jacob Komar (right) and other students at the University High School of Science and Engineering.
At the opening of the university’s new ISET complex on Aug. 29, U.S. Rep. John B. Larson presented the university with a $1.03 million check that will fund research into laser-guided manufacturing.

The grant was awarded by the nonprofit, federally funded Connecticut Center for Advanced Technology (CCAT), a national center for next-generation manufacturing based at Rentschler Field in East Hartford, Conn.

“Through technology, the world of manufacturing is changing,” said Congressman Larson (D–1st District). “By bringing together industry and tomorrow’s workforce, we are creating a chain of development that will again put Connecticut at the forefront of innovation and manufacturing technologies.”

Principal investigator on the grant is Professor Devdas Shetty, dean of research and the Vernon D. Roosa Professor of Manufacturing Engineering in the College of Engineering, Technology, and Architecture (CETA). According to Shetty, research activity will focus on laser-based processes, such as laser drilling, laser marking, laser-based joining processes, laser diagnostics with applications in sensing and control, and virtual product simulation for the factory of the future.

A number of CETA faculty members and students will participate in grant-funded research, Shetty said. Participating faculty members include Thomas Eppes, Lee Townsend, Ladimer Nagurney, Michael Nowak, and adjunct faculty members Richard Kolk and Ronald LaComb. Assistant Professor of Physics James McDonald is the co-principal investigator on the grant. Research will be carried out in conjunction with Connecticut companies and the National Aerospace Leadership Center operated by CCAT.

“This grant will help the university gain recognition for its applied research, its distinct academic programs, and its multi-institutional partnerships in laser technology,” Shetty said.