College of Engineering, Technology, and Architecture

BS in Biomedical Engineering

The Biomedical Engineering program has three options that all have a strong foundation in traditional engineering, with basic engineering courses required prior to biomedical coursework.
Questions?
Contact Program Director Michael Nowak for more information.

About the Major

academics

The standard program prepares students with a solid basis in a diverse variety of subjects related to biomechanics (bones, joints, ligaments, tendons, etc.); bio fluids (blood ow, heart valves, air  ow in the lungs, etc.); and bioinstrumentation, (the instruments and sensors used to measure physiological systems.)

About the Minor

The Biomedical Engineering minor provides students matriculating into bachelor’s degree programs in other colleges of the University, especially the sciences and the other engineering majors, with an introduction to the discipline of biomedical engineering.

Degree Requirements

For more information, and to see a complete list of degree requirements, visit the Course Catalog.

Curriculum Highlights

  • BE 260W | Biomedical Engineering Materials
  • BIO 212 | Human Anatomy and Physiology I
  • BE 301 | Biomechanics
  • BE 401 | Bioinstrumentation
  • BE 460 | Biomedical Engineering Design Project I

Pre-Med Option

The pre-medicine option includes organic chemistry and other courses related to preparing a student for entry into graduate school programs in the health professions. This option also includes the university-wide sequence in pre-health profession seminar courses. Learn more.

Electrical Engineering Concentration

The electrical option adds a focus on the electrical engineering principles behind biomedical devices with upper-level electrical engineering courses. This option assists students who wish to work with instrumentation upkeep and design in a hospital or industry setting. Learn more.

Career Outlook

biomedical

Biomedical engineers speak two languages: that of the engineer and that of the health professional. They understand what is involved in examining people, evaluating their health, and understanding what is available to improve their quality of life. They also comprehend the science and mathematics behind these areas and can evaluate the potential of new devices and methods to improve on current technologies.

Along with rigorous academic training, you will gain hands-on experience throughout your time as a student. You will present your work to your peers and instructors, as well as to the public, and because our faculty work closely with leading health related institutions and industries, you have opportunities to work on research projects and participate in internships.

Gabriela Gamory

BSBE, 2021

Gabriela had an opportunity to intern for the Research Experience for Undergraduates (REU) Student - Biomedical Engineering: Simulation, Imaging and Modeling REU Program at East Carolina University the summer of 2019. Ten students are chosen to work with an assigned faculty mentor to complete a graduate-level research project for ten weeks. Her project/job was to create a computer-generated model of the calf muscles to enable the study of Achilles tendon ruptures. 

This program has provided a lot of networking opportunities and clarity on the various career options in the BME field, and I get to present my work at the annual Biomedical Engineering Society Conference in October! It has been a lot of fun using my classroom knowledge and experience from the engineering and design classes at UHart to the biomechanics lab here at ECU.

Admission Requirements

Interested in enrolling in the Biomedical Engineering program under the College of Engineering, Technology, and Architecture (CETA)? Here is what you need to submit your application.

4+1 Program (B.S. + M.Eng degrees)

The program is designed to allow full-time engineering students to earn their B.S. and M.Eng. degrees in five years of study. Two graduate-level courses taken in the undergraduate program may be applied to both undergraduate and graduate degree requirements. Students usually commit to the program at the start of the second semester of their junior year, and juniors who are interested should contact their department chair.

In order to be accepted into the program, students must have a 3.0 cumulative grade point average at the end of the junior year (below 3.0 will be considered on a case-by-case basis).

Contact Laurie Granstrand to learn more.

University of Hartford Alumna Thienly Nguyen '18, Biomedical Engineering, had an opportunity to collaborate with a fellow Computer Engineering student in CETA for an internship with Hartford Hospital to develop virtual reality medical application.

Accreditation

The Biomedical Engineering program is accredited by ABET - Engineering Accreditation Commission (EAC).

Program Educational Objectives (PEOs)

The Biomedical Engineering program seeks to prepare qualified students for productive, rewarding careers in the engineering profession, either for entry-level practice in biomedical engineering or for entrance into appropriate graduate programs. During their careers, our alumni:

  1. will become successful practicing engineers in biomedical engineering fields and will advance professionally by accepting responsibilities and, potentially, pursuing leadership roles;

  2. in addition, those who enter the health professions will utilize their engineering knowledge in this pursuit;

  3. will advance their knowledge of engineering, both formally and informally, by engaging in lifelong learning experiences; and will,

  4. as contributing members of multidisciplinary engineering teams, successfully apply the fundamentals of engineering analysis and engineering design to the formulation and solution of emerging technical problems.

The engineering design experience is distributed over the entire engineering curriculum. This experience begins in the first year with engineering and design and continues through and culminates in Senior Capstone Research II and the senior Biomedical Engineering Design Project I and II. The senior-level design work ensures that the students have mastered preparatory engineering and engineering science courses.

Basic concepts of physics, chemistry, and mathematics are the foundations on which all engineering education is built. Basic tools of engineering, such as graphic communications, computer usage, mechanics, and thermodynamics complete the introductory phase of the program.

All Biomedical Engineering program graduates are required to complete courses designed to give the students a grounding in anatomy and physiology, biomechanics, biofluids, bioinstrumentation, and the structure of materials used by biomedical engineers. Along with the engineering courses described above, students are required to obtain a background in electrical engineering.

Extensive laboratory experience enhances the course work. There are several required laboratory classes in the sciences, materials, engineering, and natural phenomena. Written communication of laboratory results is required.

Through participation in the All-University Curriculum and additional elective courses in the humanities and/or social sciences, students are given the opportunity to broaden their perspectives and to take part in the larger learning community of the University. It is imperative that engineers understand and appreciate the special role that technology plays in our society, as well as the interactions among the various components of our society.

The Biomedical Engineering program has two basic tracks: the standard track and one designed for those students who wish to enter medical school. Those students who wish to enter medical school are required to take a full year of organic' chemistry prior to their senior year. The requirements of this option are such that if a student wishes to graduate in four years, at least one engineering course must be taken during the summer. All students who are interested in the health professions are required to join the pre-health professions program. The Pre-Health Professions Advisory Committee has developed a I-credit course for each of the first three undergraduate years to help students prepare for health profession graduate school applications.

Student Outcomes

The student learning outcomes of the Biomedical Engineering program leading to BSE degree are aligned with the student learning outcomes of ABET EAC (a through k) and Program Specific Criteria (PSC), and prepare graduates of the program to attain the program educational objectives.

Student outcomes (a) through (k) are articulated as follows. Graduates will have:

(a) an ability to apply knowledge of mathematics, science, and engineering

(b) an ability to design and conduct experiments, as well as to analyze and interpret data

(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

(d) an ability to function on multidisciplinary teams

(e) an ability to identify, formulate, and solve engineering problems

(f) an understanding of professional and ethical responsibility

(g) an ability to communicate effectively

(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

(i) a recognition of the need for, and an ability to engage in life-long learning

(j) a knowledge of contemporary issues

(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Specific Criteria are as follows. Graduates will have:

(PSC1) an understanding of biology and physiology

(PSC2) the capacity to apply advanced mathematics (including differential equations and statistics), science, and engineering to solve the problems at the interface of engineering and biology

(PSC3) the ability to make measurements on and interpret data from living systems, addressing the problems associated with the interaction between living and non-living materials and systems.

Meet the Civil, Environmental, and Biomedical Engineering Department

Mary Arico
Interim Director, NASA CT Space Grant Consortium; Assistant Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Takafumi Asaki
Assistant Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Todd Brown
Applied Assistant Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Clara Fang
Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Ameh Fioklou
Assistant Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Alan Hadad
Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
David Jacobs
Adjunct Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Eric N. James
Assistant Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Saleh Keshawarz
Department Chair; Program Director, Civil Engineering; Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Barbara McCleary
Adjunct Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Michael Nowak
Assistant Dean of Academic Planning & Curriculum; Program Director, Biomedical Engineering; Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
David Pines
Associate Dean for Student Support; Professor
Civil, Environmental, and Biomedical Engineering
Dean's Office

View Full Profile
Ted Sussmann
Assistant Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Lee Townsend
Assistant Professor
Civil, Environmental, and Biomedical Engineering

View Full Profile
Yang Yang
Assistant Professor
Architecture
Civil, Environmental, and Biomedical Engineering

View Full Profile

Start Your UHart Journey Now