College of Engineering, Technology, and Architecture

BS in Electrical Engineering

The Electrical Engineering program covers a branch of engineering concerned with generating, distributing, processing, coding, transmitting, receiving, and deciphering electrical and electromagnetic signals.

Questions?
Contact Program Director Ladimer Nagurney for more information.

About the Major

bs-electrical-engineering

Electrical Engineering involves the study and application of electricity, electronics, and electromagnetism. It consists of a wide range of fields including electronic circuits, digital computing, robotics, sensors and instrumentation, electrical power, telecommunications, photonics, control systems, wireless communications, signal processing, and integrated circuits. Practicing engineers may have a professional license and/or be members of a professional body such as the Institute of Electrical and Electronics Engineers (IEEE).

About the Electrical Engineering Minor

The minor is designed to provide students matriculating in bachelor’s degree programs in other colleges of the University, particularly the sciences and the other engineering majors, with an introduction to the discipline of electrical engineering. Learn more.

About the Mechatronics Minor

Mechatronics is the synergistic combination of mechanical and electrical engineering, computer science, and information technology, which includes control systems as well as numerical methods used to design products with built-in intelligence. Learn more.

Degree Requirements

The following courses and requirements are recommended for those pursuing the Electrical Engineering program. See more in the course catalog.

Core Classes

  • ECE 231 | Digital System Logic

  • ES 242 | Engineering by Design

  • ECE 361 | Electronics Fundamentals

  • ECE 420 | Random Signals and Noise

  • ECE 482 | Capstone Design I

Electives

In addition to the required professional electives, seniors must choose a sequence of courses in one of the following areas: VLSI, controls, communications and signal processing, electric power, computer systems, robotics, or system simulation. Both the required courses and the sequences are designed to achieve breadth and depth in the curriculum. The integrated design experience is obtained in a two semester senior capstone design project, which have increasingly are becoming industry sponsored.

The ability to work professionally on electrical systems, including the design and realization of such systems, is demonstrated by the progression of courses from introductory to comprehensive, including design components. It also includes some technical elective courses students may choose.

Through participation in the All-University Curriculum and in additional elective courses in the humanities and/or social sciences, students are given the opportunity to broaden their knowledge base and to participate in the larger learning community of the University.

Career Outlook

bs-electrical-engineering

Electrical engineers work in a wide range of industries using skills that range from basic circuit theory to complex signals, systems, and project management. The tools and equipment consist of instrumentation such as a voltmeter, oscilloscope, spectrum analyzer, logic analyzer, waveform generator, and motor/generator assemblies to high-end test equipment and sophisticated design/manufacturing software applications.

Our graduates have gone on to work for companies like:

  • Bucher Emhart Glass
  • Electric Boat
  • Eversource Energy
  • Goodrich
  • Hamilton Sundstrand
  • Otis Elevator
  • Pratt & Whitney
  • Raytheon
  • Sikorsky Aircraft

Josephine Garcia

B.S.E.E./Computer Science, 2020

Josephine had the opportunity to work as an engineering intern at Bauer Inc. during the summer of 2019. She specifically worked with their engineers to redesign the company's wheel torquing system to accommodate new hardware. Her main focus in the project was working with the automation and controls group to update the system's software. 

Working at a smaller company like Bauer has been an educational experience because I am able to take part in all aspects of the project. The courses at CETA have been a great help since they're given me prior experience in development platforms, such as LabVIEW, in the engineering design process, and in critical thinking to help me feel confident in producing solutions at my internship.

Admission Requirements

Interested in enrolling in the Electrical Engineering program under the College of Engineering, Technology, and Architecture (CETA)? Here is what you need to submit your application.

4+1 Program (B.S. + M.Eng degrees)

The program is designed to allow full-time engineering students to earn their B.S. and M.Eng. degrees in five years of study. Two graduate-level courses taken in the undergraduate program may be applied to both undergraduate and graduate degree requirements. Students usually commit to the program at the start of the second semester of their junior year, and juniors who are interested should contact their department chair.

In order to be accepted into the program, students must have a 3.0 cumulative grade point average at the end of the junior year (below 3.0 will be considered on a case-by-case basis).

Contact Laurie Granstrand to learn more.

Accreditation

The Electrical Engineering program is accredited by ABET - Engineering Accreditation Commission (EAC).

Program Educational Objectives (PEOs)

During their careers, Electrical Engineering graduates will

  • become successful practicing engineers or pursue another career that makes use of engineering principles and professional skills;

  • become contributing members of multidisciplinary teams and successfully apply the fundamentals of their educational background; and

  • pursue professional development, including continuing or advanced education, relevant to their career path.

To achieve these objectives students are given a rigorous foundation in mathematics, physics, chemistry, mechanics, programming, digital systems, and circuit theory. They are then immersed in a sequence of required courses in microprocessors, electronics, electromagnetics, signals and systems, and design practice. In the senior year, Digital Signal Processing, Random Signals and Noise, and Design II (senior project) are required courses, In addition, students choose a sequence of courses in one of the following areas: communications and signal processing, computer systems, control systems, electric power, and microelectronics.

Students must complete a 4-credit lecture and laboratory course in general chemistry. Students also must complete two 4-credit lecture courses in calculus-based physics (including laboratory components), thus meeting the depth requirement.

Students also take M 242 Differential Equations (3 cr.), M 240 Calculus of Several Variables (4 cr.), and M 220 Linear Algebra (3 cr.). Students should have several electrical engineering courses that integrate mathematical skills and should have these courses as co- or prerequisites. Electrical engineering students also take a stand-alone probability and statistics course, ECE 420 Random Signals and Noise.

The ability to work professionally on electrical systems later, including the design and realization of such systems, is demonstrated by the progression of courses from introductory to comprehensive, including design components. It also includes some technical elective courses students may choose in each stem. These are not all offered at the same time, but there are selections from each stem available in each semester of the senior year. In addition, the final capstone sequence contains projects that usually involve material from each area.

Our senior capstone projects increasingly are becoming industry sponsored. Traditionally, instruction in the design of electrical systems is provided in a sequence of courses: VLSI in ECE 565 and ECE 567, controls in ECE 442 and ECE 543, communications in ECE 423, ECE 424, ECE 521, and ECE 540. Both the required courses and the sequences are designed to achieve breadth and depth in the curriculum. The integrated design experience is obtained in the senior capstone project (ECE 483 Design II).

Through participation in the All-University Curriculum and in additional elective courses in the humanities and/or social sciences, students are given the opportunity to broaden their knowledge base and to take part in the larger learning community of the University.

Extensive laboratory work supplements the theoretical course work through hands-on experience. In addition to the laboratories in the sciences, there are several required laboratory courses in engineering: Circuits I and II, Electronics I and II, Digital Logic, Microprocessors, and Digital Signal Processing. Students exercise their verbal and technical writing skills in a required writing course as well as in many engineering courses. Also, written and oral communication of laboratory results is required.

The engineering design experience is distributed throughout the entire curriculum. The design experience begins in the first year and continues throughout the curriculum, culminating with the senior capstone project.

Student Outcomes

(a) an ability to apply knowledge of mathematics, science, and engineering

(b) an ability to design and conduct experiments, as well as to analyze and interpret data

(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

(d) an ability to function on multidisciplinary teams

(e) an ability to identify, formulate, and solve engineering problems

(f) an understanding of professional and ethical responsibility

(g) an ability to communicate effectively

(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

(i) a recognition of the need for, and an ability to engage in life-long learning

(j) a knowledge of contemporary issues

(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

(PSC-1) Graduates have a knowledge of probability and statistics, including applications

Meet the Samuel I. Ward Department of Electrical and Computer Engineering

Akram Abu-aisheh
Professor
Electrical and Computer Engineering
View Full Profile
Alaa Al Ghazo
Visiting Instructor
Electrical and Computer Engineering
View Full Profile
Hisham Alnajjar
Dean; Director of Space Grant
Dean's Office
View Full Profile
Timothy Britt
Assistant Professor
Electrical and Computer Engineering
View Full Profile
Michael deAlmeida
Applied Assistant Professor
Electrical and Computer Engineering
View Full Profile
Thomas Eppes
Professor
Electrical and Computer Engineering
View Full Profile
Krista M. Hill
Program Director, Computer Engineering; Associate Professor
Electrical and Computer Engineering
View Full Profile
Wallace Kirschner
Adjunct Professor
Electrical and Computer Engineering
View Full Profile
Dominick Lauria
Adjunct Professor
Electrical and Computer Engineering
View Full Profile
Patricia Mellodge
Program Director, Electromechanical Engineering Technology; Associate Professor
Electrical and Computer Engineering
View Full Profile
Saeid Moslehpour
Professor
Electrical and Computer Engineering
View Full Profile
Ladimer Nagurney
Program Director, Electrical Engineering; Professor; Professional Engineer - PE (Connecticut)
Electrical and Computer Engineering
View Full Profile
Bruce Plumley
Visiting Assistant Professor
Electrical and Computer Engineering
View Full Profile
Johanna Raphael
Applied Assistant Professor
Electrical and Computer Engineering
View Full Profile
Hemchandra Shertukde
Professor
Electrical and Computer Engineering
View Full Profile
David Shuman
Program Director, Audio Engineering Technology; Assistant Professor
Electrical and Computer Engineering
View Full Profile
Kiwon Sohn
Assistant Professor
Electrical and Computer Engineering
View Full Profile
Ying Yu
Department Chair; Program Director, Computer & Electronic Engineering Technology; Associate Professor
Electrical and Computer Engineering
View Full Profile

Start Your UHart Journey Now